Abstract
Abstract As part of our ongoing efforts in the development of new 18F-labeled peptides for clinical PET imaging, a new two-step 18F-labeling methodology based on the chemoselective oxime formation between an unprotected aminooxy-functionalized peptide and a 18F-labeled aldehyde was investigated and optimized. 4-[18F]Fluorobenzaldehyde ([18F]FB-CHO) was prepared by direct n.c.a. fluorination of 4-formyl-N,N,N-trimethylanilinium triflate and purified by radio-HPLC or a strong-cation-exchange/reverse phase cartridge system. The aminooxyacetic acid (Aoa) modified model peptide LEF-NH2 (Leu-Glu-Phe-NH2) and monomeric, dimeric and tetrameric RGD-containing cyclopeptides were synthesized by solid phase peptide synthesis. Radiochemical yields of N-(4-[18F]fluorobenzylidene)-oxime-formation ([18F]FBOA) with the Aoa-modified unprotected peptides were investigated. Optimized reaction conditions (60 °C, 0.5 mM peptide, 15 min, aqueous solution, pH 2.5) resulted in 70%-90% conjugation yields for all unprotected peptides studied. Chemoselectivity was demonstrated in competition experiments with amino acid mixtures. Biodistribution in M21 melanoma bearing mice showed improved tumor uptake and excretion behaviour in the series c(RGDfE)HEG-Dpr-[18F]FBOA < (c(RGDfE)HEG)2K-Dpr-[18F]FBOA < ((c(RGDfE)HEG)2K)2K-Dpr-[18F]FBOA. Two hours p.i. the fraction of intact c(RGDfE)HEG-K-Dpr-[18F]FBOA in blood, liver, kidney and tumor was >90%, indicating high in vivo stability of the oxime linkage. Initial PET studies with ((c(RGDfE)HEG)2-K)2-K-Dpr-[18F]FBOA showed excellent imaging of M21-melanomas in mice. In conclusion, the new two-step chemoselective 18F-labeling fulfills all requirements for large scale syntheses of peptides in clinical routine. This methodology is also adaptable to other radioisotopes (e.g. radiohalogenation in general) and will thus offer a broad field of application.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.