Abstract

This study unveils a novel approach by efficiently loading earth-abundant cobalt onto a covalent organic framework (COF) for catalyzing the hydrogenation of nitroarenes to aryl amines. The synthesized Co@NC650 nanocomposites exhibit enhanced graphitization and catalytic performance, attributed to synergistic interactions between cobalt and the carbon matrix. The Co@NC650 The resulting material is thoroughly characterized using techniques such as PXRD, XPS, FE-SEM, TEM, and FT-IR. Utilizing this synthesized catalyst, a chemoselective reduction of nitroarenes to corresponding amines is demonstrated under relatively mild conditions, employing molecular hydrogen as sole reductant without any additives or bases. The methodology delivers high yields and exhibits tolerance towards wide range of functional groups. The chemoselective hydrogenation is achieved even in the presence of other potentially reducible functional groups such as ketones, carboxylic acids, amides, sulphonamides, and chalcones. Selected examples showcasing the synthesis of biologically important amines are presented. Furthermore, the proposed catalyst demonstrates reusability without any loss of activity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call