Abstract

Hydrogenation reactions are fundamental functional group transformations in chemical synthesis. Here, we introduce an electrochemical method for the hydrogenation of ketones and aldehydes by in situ formation of a Mn‐H species. We utilise protons and electric current as surrogate for H2 and a base‐metal complex to form selectively the alcohols. The method is chemoselective for the hydrogenation of C=O bonds over C=C bonds. Mechanistic studies revealed initial 3 e− reduction of the catalyst forming the steady state species [Mn2(H−1L)(CO)6]−. Subsequently, we assume protonation, reduction and internal proton shift forming the hydride species. Finally, the transfer of the hydride and a proton to the ketone yields the alcohol and the steady state species is regenerated via reduction. The interplay of two manganese centres and the internal proton relay represent the key features for ketone and aldehyde reduction as the respective mononuclear complex and the complex without the proton relay are barely active.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.