Abstract

Chemoresponsive supramolecular systems with infinite switching capability are important for applications in recycled materials and intelligent devices. To attain this objective, here a chemoresponsive polypseudorotaxane is reported on the basis of a bis(p-phenylene)-34-crown-10 macrocycle (H) and a cyano-substituted viologen guest (G). H and G form a [2]pseudorotaxane (H⊃G) both in solution and in the solid state. Upon addition of AgSF6 , a polypseudorotaxane (denoted as [H⋅G⋅Ag]n ) forms as synergistically driven by host-guest complexation and metal-coordination interactions. [H⋅G⋅Ag]n depolymerizes into a [3]pseudorotaxane (denoted as H2 ⋅G⋅Ag2 ⋅acetone2 ) upon addition of H and AgSF6 , while it reforms with successive addition of G. The transformations between [H⋅G⋅Ag]n and H2 ⋅G⋅Ag2 ⋅acetone2 can be switched for infinite cycles, superior to the conventional chemoresponsive supramolecular polymeric systems with limited switching capability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call