Abstract

Commercially available nanosized powder of silicon carbide (named SiC), was thermally, morphologically and structurally characterized. After that, it was screen-printed onto alumina substrates in order to obtain thick films to be tested as functional material for conductometric gas sensors. Samples were exposed to SO2 and H2S, gases with high importance in many application fields, with the aim of verifying its capability of distinguishing between them. The characterization highlighted that this semiconductor type is selective for sulphur dioxide (SO2), in concentrations within the ppm range. This interesting result was found at high temperatures (600-800°C), useful for harsh environmental, and the measurements proved to be completely free from humidity interference. Applications of such a sensor could span many fields, since SO2 plays an important role in air pollution, industrial processes and wine making monitoring.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.