Abstract
Many cellular factors are regulated via mechanisms affecting protein conformation, localization, and function that may be undetected by most commonly used RNA- and protein-based profiling methods that monitor steady-state gene expression. Mass-spectrometry-based chemoproteomic profiling provides alternatives for interrogating changes in the functional properties of proteins that occur in response to biological stimuli, such as viral infection. Taking dengue virus 2 (DV2) infection as a model system, we utilized reactive ATP- and ADP-acyl phosphates as chemical proteomic probes to detect changes in host kinase function that occur within the first hour of infection. The DNA-dependent protein kinase (DNA-PK) was discovered as a host enzyme with significantly elevated probe labeling within 60 min of DV2 infection. Increased probe labeling was associated with increased DNA-PK activity in nuclear lysates and localization of DNA-PK in nucleoli. These effects on DNA-PK were found to require a postfusion step of DV2 entry and were recapitulated by transfection of cells with RNA corresponding to stem loop B of the DV2 5' untranslated region. Upon investigation of the potential downstream consequences of these phenomena, we detected a modest but significant reduction in the interferon response induced by DV2 in cells partially depleted of the Ku80 subunit of DNA-PK. These findings identify changes in DNA-PK localization and activity as very early markers of DV2 infection. More broadly, these results highlight the utility of chemoproteomic profiling as a tool to detect changes in protein function associated with different cell states and that may occur on very short time scales.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.