Abstract

Nitric oxide (NO) is a short-lived pleiotropic regulator and is required for numerous pathophysiological functions, including macrophage-mediated immunity and cancer. It is a highly reactive free radical produced from l-arginine by different isoforms of NO synthases (NOSs). Sustained induction of inducible NOS (iNOS) during chronic inflammatory conditions leads to the formation of reactive intermediates of NO, which are mutagenic and cause DNA damage or impairment of DNA repair, alter cell signaling, and promote proinflammatory and angiogenic properties of the cell, thus contributing to carcinogenesis. Besides its well-established role in inflammation, increased expression of iNOS has been observed in colorectal tumors and other cancers. NO-related signaling pathways involved in colon tumorigenesis seem to progress through stimulation of proinflammatory cytokines and via posttranslational protein modifications of important antiapoptotic molecules in the tumors. NO can stimulate and enhance tumor cell proliferation by promoting invasive, angiogenic, and migratory activities. In contrast, studies also suggest that high levels of NO may be protective against tumor growth by inducing tumor cell death. However, a number of in vitro studies and particularly experimental animal data support the notion that NO and its reactive metabolite peroxynitrite stimulate cyclooxygenase-2 activity, leading to generation of prostaglandins that enhance tumor growth. These prostaglandins further augment tumor promotion and invasive properties of tumor cells. Hence, selective inhibitors of iNOS and combination strategies to inhibit both iNOS and cyclooxygenase-2 may have a preventive role in colon cancer.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.