Abstract

Lung and colon tumors were induced in A/J, C3H, and A/J × C3H (AC3) mice by administering 16 mg/kg vinyl carbamate followed by 6 weekly doses of 12 mg/kg azoxymethane (AOM). Beginning 1 week after carcinogen treatment, the mice received the chemopreventive agents, dexamethasone or piroxicam, at 0.1 and 75 mg/kg in the diet, respectively. Both AOM and vinyl carbamate induced lung tumors, but only AOM induced colon tumors. The strain sensitivity for both colon and lung tumors was A/J > AC3 > C3H mice. Dexamethasone and piroxicam reduced the multiplicity of colon and lung tumors in A/J and AC3 mice, demonstrating the advantage of a combined colon and lung bioassay. The ability of budesonide, a drug that prevents mouse lung tumors, to modulate DNA methylation in vinyl carbamate–induced lung tumors was also determined. Budesonide administered for only 7 days prior to sacrifice caused a dose-dependent (0.6 to 2.4 mg/kg diet) reversal in tumors of DNA hypomethylation and hypomethylation of the insulin-like growth factor (IGF)-II gene in the differentially methylated region (DMR) 2 region of exons 4 to 5. Longer treatment with budesonide reversed hypomethylation when administered up to the time of sacrifice. These results indicate that reversal of the hypomethylation of DNA and of specific genes in lung tumors may be applicable as a surrogate end-point biomarker for chemoprevention.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.