Abstract

Chemoprevention of liver carcinogenesis by S-adenosyl-L-methionine (SAM) was studied in F344 male rats. The rats were given 1,2-dimethylhydrazine (1,2-DMH) 2 HCl (100 mg/kg, i.p.) 18 h after two-thirds hepatectomy. One week later they were fed a semisynthetic basal diet containing 1% orotic acid (OA) for 29 weeks. At this time the rats were transferred to the basal semisynthetic diet and were killed 3 weeks later. SAM treatment (384 mumol/kg/day, i.m.), was started 1 week after 1,2-DMH and was continued up to the end of the experiment. Controls received solvent alone. SAM exerted an inhibitory effect on the induction of preneoplastic and neoplastic lesions. For example, nodules with diameters of 1-2 and 2-6 mm exhibited a decrease in both incidence and number per liver, while no such inhibitory effect was seen in the category of larger nodules. Furthermore, hepatocellular carcinoma (HCC) also exhibited a decrease in the SAM-treated group. The number/liver and incidence were 0.04 and 4.8% respectively in the SAM-treated group, compared to 0.38 and 37.8% in the control group. Microscopic examination showed the presence of well-differentiated carcinomas and atypical nodules in control rats, while only one small, well-differentiated tumor and one nodule with patterns of initial transformation were seen in SAM-treated rats. No patchy staining of glutathione-S-transferase, indicative of remodeling, was observed in nodules of both SAM-treated and control rats. Nodules and HCCs developing in SAM-treated rats exhibited a relatively high number of apoptotic bodies. Apoptotic bodies count showed 2.8- and 1.8-fold increases in nodules and HCCs of SAM-treated rats with respect to controls. These results indicate that SAM exerts a chemopreventive effect on hepatocarcinogenesis induced by the OA model. SAM seems to be more effective in inhibiting nodule to HCC progression than on the growth of nodule per se. The inhibitory effect is associated with an increase in cell loss by apoptosis in nodules and HCC.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.