Abstract

A combination of rotating disk sorptive extraction (RDSE) using Oasis® HLB as the sorbent phase and gas chromatography mass spectrometry (GC-MS) has been performed for the determination of four of the most widely used parabens: methylparaben, ethylparaben, propylparaben and n-butylparaben. The extraction and derivatization of the analytes in water samples were optimized by using factorial (screening) and Doehlert designs, thus reducing the number of analyses with the concomitant reduction of time, reagents, waste, samples and cost. Thus, a RDSE method using 20mL of sample was performed. The disk was rotated at 2900rpm for 70min at room temperature. After a desorption step and evaporation of solvent, a derivatization method using 5μL of N-methyl-N-(trimethylsilyl)trifluoroacetamide (MSTFA) for 15min at room temperature was used previously to inject the final extract into GC-MS. The detection limits and precision (%RSD) were lower than 0.05μgL− 1 and 9.7% for the studied compounds, respectively. Recoveries were studied using effluent samples of a wastewater treatment plant (WWTP), with values higher than 80% being obtained. The applicability and reliability of this methodology were confirmed through the analysis of tap water and influents from Santiago, Chile, with concentration values ranging from 0.57 to 0.83μgL− 1 in influents. The main advantage of the present RDSE method is that it is significantly faster than its counterpart by SBSE and requires a considerable lower volume of derivatizing agent.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.