Abstract

Chemokines regulate the trafficking of leukocytes in immunity and inflammation and have been implicated in mouse models in acute cardiac and renal allograft rejection; however, their significance to human transplantation is not yet defined. The association of human chemokine receptor genetic variants, CCR5-Delta32, CCR5-59029-A/G, CCR2-V64I, CX3CR1-V249I, and CX3CR1-T280M, with outcome in 163 renal transplant recipients was examined here. Significant reductions were found in risk of acute renal transplant rejection in recipients who possessed the CCR2-64I allele (odds ratio [OR], 0.30; 95% confidence interval [CI], 0.12 to 0.78; P = 0.014) or who were homozygous for the 59029-A allele (OR, 0.37; 95% CI, 0.16 to 0.85; P = 0.016). There were no significant differences in the incidence of rejection among patients stratified as with or without CCR5-Delta32 or by the CX3CR1-V249I or CX3CR1-T280M genotypes. Adjustment for known risk factors for transplant rejection confirmed the univariate findings for possession of the CCR2-64I allele (OR, 0.20; P = 0.032) and homozygosity for the 59029-A allele (OR, 0.26; P = 0.027). It was concluded that the risk of acute rejection in renal transplantation is associated with genetic variation in the chemokine receptors CCR2 and CCR5.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.