Abstract
We have investigated the chemokine receptor expression and migratory behavior of a new subset of nickel-specific skin-homing regulatory CD4(+) T cells (Th(IL-10)) releasing high levels of IL-10, low IFN-gamma, and undetectable IL-4. These cells inhibit in a IL-10-dependent manner the capacity of dendritic cells to activate nickel-specific Tc1 and Th1 lymphocytes. RNase protection assay and FACS analysis revealed the expression of a vast repertoire of chemokine receptors on resting Th(IL-10), including the Th1-associated CXCR3 and CCR5, and the Th2-associated CCR3, CCR4, and CCR8, the latter at higher levels compared with Th2 cells. The most active chemokines for resting Th(IL-10), in terms of calcium mobilization and in vitro migration, were in order of potency: CCL2 (monocyte chemoattractant protein-1, CCR2 ligand), CCL4 (macrophage-inflammatory protein-1beta, CCR5 ligand), CCL3 (macrophage-inflammatory protein-1alpha, CCR1/5 ligand), CCL17 (thymus and activation-regulated chemokine, CCR4 ligand), CCL1 (I-309, CCR8 ligand), CXCL12 (stromal-derived factor-1, CXCR4), and CCL11 (eotaxin, CCR3 ligand). Consistent with receptor expression down-regulation, activated Th(IL-10) exhibited a reduced or absent response to most chemokines, but retained a significant migratory capacity to I-309, monocyte chemoattractant protein-1, and thymus and activation-regulated chemokine. I-309, which was ineffective on Th1 lymphocytes, attracted more efficiently Th(IL-10) than Th2 cells. I-309 and CCR8 mRNAs were not detected in unaffected skin and were up-regulated at the skin site of nickel-allergic reaction, with an earlier expression kinetics compared with IL-10 and IL-4. Results indicate that skin-homing regulatory Th(IL-10) lymphocytes coexpress functional Th1- and Th2-associated chemokine receptors, and that CCR8/I-309-driven recruitment of both resting and activated Th(IL-10) cells may be critically involved in the regulation of Th1-mediated skin allergic disorders.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.