Abstract

The subendothelial accumulation of macrophage-derived foam cells is one of the hallmarks of atherosclerosis. The recruitment of monocytes to the intima requires the interaction of locally produced chemokines with specific cell surface receptors, including the receptor (CCR2) for monocyte chemoattractant protein-1 (MCP-1). We have previously reported that monocyte CCR2 gene expression and function are effectively downregulated by proinflammatory cytokines. In this study we identified low density lipoprotein (LDL) as a positive regulator of CCR2 expression. Monocyte CCR2 expression was dramatically increased in hypercholesterolemic patients compared with normocholesterolemic controls. Similarly, incubation of human THP-1 monocytes with LDL induced a rapid increase in CCR2 mRNA and protein. By 24 hours the number of cell surface receptors was doubled, causing a 3-fold increase in the chemotactic response to MCP-1. The increase in CCR2 expression and chemotaxis was promoted by native LDL but not by oxidized LDL. Oxidized LDL rapidly downregulated CCR2 expression, whereas reductively methylated LDL, which does not bind to the LDL receptor, had only modest effects on CCR2 expression. A neutralizing anti-LDL receptor antibody prevented the effect of LDL, suggesting that binding and internalization of LDL were essential for CCR2 upregulation. The induction of CCR2 expression appeared to be mediated by LDL-derived cholesterol, because cells treated with free cholesterol also showed increased CCR2 expression. These data suggest that elevated plasma LDL levels in conditions such as hypercholesterolemia enhance monocyte CCR2 expression and chemotactic response and potentially contribute to increased monocyte recruitment to the vessel wall in chronic inflammation and atherogenesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.