Abstract

Solid tumour and leukemic cells expressing chemokine receptors, metastasize to chemokine-secreting organs. Chemokines indirectly affect tumour development by attracting immunocompetent cells with pro- or anti-tumoral activities. Various membrane-associated and soluble proteases selectively cleave specific chemokines. Precursor plasma chemokines (CXCL7, CCL14) need to be proteolytically processed to obtain receptor affinity. Angiogenic CXC chemokines (CXCL1, CXCL8) have increased CXCR1/CXCR2 affinity after limited NH 2-terminal processing, whereas truncated angiostatic chemokines (CXCL10) show lower CXCR3 affinity without loss of angiostatic potential. NH 2-terminally cleaved monocyte chemotactic proteins (CCL2, CCL7, CCL8) have impaired capacity to attract tumour-associated macrophages and function as receptor antagonists for intact CC chemokines. Migration of Th1/CCR5 + and Th2/CCR4 + effector lymphocytes toward CCR5 (CCL5, CCL3L1) and CCR4 (CCL22) ligands is affected by cleavage. Although proteolytical processing of chemokines is well studied in vitro, the direct or indirect effects on tumour invasion and metastasis are only poorly evaluated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call