Abstract

Particulate wear debris induces the expression of pro-inflammatory cytokine and chemokine genes in various cell types of the periprosthetic region. We have previously reported that titanium particles stimulate the selective induction of interleukin-8 (IL-8) and monocyte chemoattractant protein-1 (MCP-1) chemokines in human osteoblast-like osteosarcoma cells. In this study, we characterize the human bone marrow-derived osteoblast chemokine response to titanium particles. We demonstrate that titanium particles result in enhanced IL-8 and MCP-1 protein secretion as well as differential chemokine gene activation. Osteoblast chemokine expression was regulated at the level of gene transcription, with a time-dependent induction of NF-kappaB activation. Inhibition studies with N-acetyl-L-cysteine (Nac) and MG-132 suggest that titanium particle activation of NF-kappaB activity and IL-8 chemokine expression involves oxidant signaling and IkappaBalpha-proteasomal degradation. Activation of the NF-kappaB transcription factor, as well as the IL-8 gene, are redox-regulated. We also demonstrate that while cytochalasin D, a potent inhibitor of phagocytosis, suppressed the titanium particle effect on IL-8 protein release in human bone marrow-derived osteoblasts, the inhibitor had no effect on IL-8 expression in MG-63 osteoblast-like cells. Collectively, these results provide insight into the potential mechanisms responsible for the particulate activation of osteoblast chemokine expression and suggest an important role for the osteoblast in the pathogenesis of periprosthetic osteolysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.