Abstract

In addition to its well-characterized effects in immune system, chemokine CC motif ligand 2 (CCL2, formerly known as monocyte chemoattractant protein-1) is believed to play an important role in brain physiological and pathological processes. It has been shown that CCL2 and its cognate receptor chemokine CC motif receptor 2 are constitutively expressed in several brain regions including the hippocampus, and the expression is up-regulated under pathological conditions. Whereas most investigations have so far focused on its involvement in CNS pathology, few studies have examined the effects of CCL2 on neuronal and synaptic physiology. In this study, we tested the effects of CCL2 on neuronal excitability and excitatory synaptic transmission in the CA1 region of rat hippocampal slices using whole-cell patch clamp techniques. Bath application of CCL2 depolarized membrane potential and increased spike firing in CA1 neuronal cells. Bath application of CCL2 also produced an increase of excitatory post-synaptic currents recorded in Schaffer-collateral fibers to CA1 synapses. Quantal analysis revealed that CCL2 increased the frequency of spontaneous excitatory post-synaptic current occurrence and mean quantal content. Taken together, our data indicate that CCL2 enhances neuronal excitability and synaptic transmission via pre-synaptic mechanisms. These results support the emerging concept that chemokines function as neuromodulators in the CNS.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call