Abstract

BackgroundNeuroinflammation has been implicated in the pathophysiology of post-hemorrhagic hydrocephalus (PHH) of prematurity, but no comprehensive analysis of signaling molecules has been performed using human cerebrospinal fluid (CSF).MethodsLumbar CSF levels of key cytokines (IL-1α, IL-1β, IL-4, IL-6, IL-8, IL-10, IL-12, TNF-α, TGF-β1, IFN-γ) and chemokines (XCL-1, CCL-2, CCL-3, CCL-19, CXCL-10, CXCL-11, CXCL-12) were measured using conventional and multiplexed Enzyme-linked Immunosorbent Assays and compared between preterm infants with PHH and those with no known neurological injury. The relationships between individual biomarker levels and specific CSF cell counts were examined.ResultsTotal protein (TP) CSF levels were elevated in the PHH subjects compared to controls. CSF levels of IL-1α, IL-4, IL-6, IL-12, TNF-α, CCL-3, CCL-19, and CXCL-10 were significantly increased in PHH whereas XCL-1 was significantly decreased in PHH. When normalizing by TP, IL-1α, IL-1β, IL-10, IL-12, CCL-3, and CCL-19 levels were significantly elevated compared to controls, while XCL-1 levels remained significantly decreased. Among those with significantly different levels in both absolute and normalized levels, only absolute CCL-19 levels showed a significant correlation with CSF nucleated cells, neutrophils, and lymphocytes. IL-1β and CXCL-10 also were correlated with total cell count, nucleated cells, red blood cells, and neutrophils.ConclusionsNeuroinflammation is likely to be an important process in the pathophysiology of PHH. To our knowledge, this is the first study to investigate CSF levels of chemokines in PHH as well as the only one to show XCL-1 selectively decreased in a diseased state. Additionally, CCL-19 was the only analyte studied that showed significant differences between groups and had significant correlation with cell count analysis. The selectivity of CCL-19 and XCL-1 should be further investigated. Future studies will further delineate the role of these cytokines and chemokines in PHH.

Highlights

  • Neuroinflammation has been implicated in the pathophysiology of post-hemorrhagic hydrocephalus (PHH) of prematurity, but no comprehensive analysis of signaling molecules has been performed using human cerebrospinal fluid (CSF)

  • Neuroinflammation is likely to be an important process in the pathophysiology of PHH and its associated neurological injury

  • Based on the results presented future studies will delineate the role of specific cytokines and chemokines in the pathophysiology of PHH

Read more

Summary

Introduction

Neuroinflammation has been implicated in the pathophysiology of post-hemorrhagic hydrocephalus (PHH) of prematurity, but no comprehensive analysis of signaling molecules has been performed using human cerebrospinal fluid (CSF). A number of reports have detailed changes in the CSF levels of IL-1β, IL-6, IL-8, TNF-α, IFN-γ, TGF-β1, and TGF-β2 in the setting of experimental or human PHH [1, 9,10,11,12,13]. Human studies into the neuroinflammatory basis of PHH have largely targeted select proteins and, to our knowledge, have not considered the role of chemokines. We used multiplex analyses investigate the CSF levels of key inflammatory cytokines (IL-1α, IL-1β, IL-4, IL-6, IL-8, IL-10, IL-12, TNF-α, TGF-β1, IFN-γ) and chemokines (XCL-1, CCL-2, CCL-3, CCL-19, CXCL-10, CXCL-11, CXCL-12) in the setting of human infant PHH

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.