Abstract

Antioxidants are chemicals used to protect foods from deterioration by neutralizing free radicals and inhibiting the oxidative process. One approach to investigate the antioxidant activity is to develop quantitative structure-activity relationships (QSARs). A curated database of 165 structurally heterogenous phenolic compounds with the Trolox equivalent antioxidant capacity (TEAC) was developed. Molecular geometries were optimized by means of the GFN2-xTB semiempirical method and diverse molecular descriptors were obtained afterwards. For model development, V-WSP unsupervised variable reduction was used before performing the genetic algorithms-variable subset selection (GAs-VSS) to construct the best five-descriptor multiple linear regression model. The coefficient of determination and the root-mean-square error were used to measure the performance in calibration (R2 = 0.789 and RMSEC = 0.381), and test set prediction (Q2 = 0.748 and RMSEP = 0.416), along several cross-validation criteria. To thoroughly understand the TEAC prediction, a fully explained mechanism of action of the descriptors is provided. In addition, the applicability domain of the model defined a theoretical chemical space for reliable predictions of new phenolic compounds. This in silico model conforms to the five principles stated by the Organization for Economic Co-operation and Development (OECD). The model may be useful for virtual screening of the antioxidant chemical space, and for identifying the most potent molecules related to an experimental measurement of TEAC activity. In addition, the model could assist chemists working on computer-aided drug design (CADD) for the synthesis of new targets with improved activity and potential uses in food science. This article is protected by copyright. All rights reserved.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.