Abstract

Classical chemotherapeutic drugs may cause immunogenic cell death (ICD), followed by activating CD8+ T cells to promote cell-mediated antitumor immune responses. However, CD8+ T cells become exhausted due to tumor antigens' continuous stimulation, creating a major obstacle to effectively suppressing tumor growth and metastasis. Here, we develop an approach of chemo-gene combinational nanomedicine to bridge and reprogram chemotherapy and immunotherapy. The dually loaded nanomedicine induces ICD in tumor cells through doxorubicin and reverses the antitumor effects of exhausted CD8+ T cells through the small interfering RNA. The synergistic chemo-gene and fluorine assembly nanomedicine enriched in reactive oxygen species and acid-sensitive bonds results in enhanced cancer immunotherapy to inhibit tumor growth and the lung metastasis of breast cancer in a mouse model of breast cancer and melanoma. This study provides an efficient strategy and insights into chemoimmunological cascade therapy for combating malignant metastatic tumors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.