Abstract

BackgroundCTBT (7-chlorotetrazolo [5,1-c]benzo[1,2,4]triazine) increases efficacy of commonly used antifungal agents by an unknown mechanism. It increases the susceptibility of Saccharomyces cerevisiae, Candida albicans and Candida glabrata cells to cycloheximide, 5-fluorocytosine and azole antimycotic drugs. Here we elucidate CTBT mode of action with a combination of systematic genetic and transcriptome analysis.ResultsTo identify the cellular processes affected by CTBT, we screened the systematic haploid deletion mutant collection for CTBT sensitive mutants. We identified 169 hypersensitive deletion mutants. The deleted genes encode proteins mainly involved in mitochondrial functions, DNA repair, transcription and chromatin remodeling, and oxidative stress response. We found that the susceptibility of yeast cells to CTBT depends on molecular oxygen. Transcriptome analysis of the immediate early response to CTBT revealed rapid induction of oxidant and stress response defense genes. Many of these genes depend on the transcription factors Yap1 and Cin5. Yap1 accumulates rapidly in the nucleus in CTBT treated cells suggesting acute oxidative stress. Moreover, molecular calculations supported a superoxide generating activity of CTBT. Superoxide production in vivo by CTBT was found associated to mitochondria as indicated by oxidation of MitoSOX Red.ConclusionWe conclude that CTBT causes intracellular superoxide production and oxidative stress in fungal cells and is thus enhancing antimycotic drug effects by a secondary stress.

Highlights

  • CTBT (7-chlorotetrazolo [5,1-c]benzo[1,2,4]triazine) increases efficacy of commonly used antifungal agents by an unknown mechanism

  • These results clearly indicate that mitochondrial functions and molecular oxygen are involved in the CTBT susceptibility in yeast cells

  • Its mode of action depending on the molecular oxygen has been resolved using the combination of two genome-wide approaches including the screening of yeast deletion library for CTBT hypersensitivity mutants and transcriptome analysis of yeast cells exposed to this drug

Read more

Summary

Introduction

CTBT (7-chlorotetrazolo [5,1-c]benzo[1,2,4]triazine) increases efficacy of commonly used antifungal agents by an unknown mechanism. It increases the susceptibility of Saccharomyces cerevisiae, Candida albicans and Candida glabrata cells to cycloheximide, 5-fluorocytosine and azole antimycotic drugs. Despite many antifungal agents interfering with metabolism and growth of fungal cells a limited number of compounds are being used for treatment of mycotic diseases caused by human pathogenic fungal species. Used antifungals belong to three major classes of agents: azoles, polyenes, and echinocandines [3]. These compounds target ergosterol biosynthesis, membrane functions and cell wall biosynthesis. Echinocandins are effective in Candida prevention and offer a greater spectrum of activity across the various Candida species, including C. krusei and C. glabrata, which are not reliably covered by azoles e.g. fluconazole [6]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call