Abstract
Owing to the intrinsic polypharmacological nature of most small-molecule kinase inhibitors, there is a need for computational models that enable systematic exploration of the chemogenomic landscape underlying druggable kinome toward more efficient kinome-profiling strategies. We implemented VirtualKinomeProfiler, an efficient computational platform that captures distinct representations of chemical similarity space of the druggable kinome for various drug discovery endeavors. By using the computational platform, we profiled approximately 37 million compound-kinase pairs and made predictions for 151,708 compounds in terms of their repositioning and lead molecule potential, against 248 kinases simultaneously. Experimental testing with biochemical assays validated 51 of the predicted interactions, identifying 19 small-molecule inhibitors of EGFR, HCK, FLT1, and MSK1 protein kinases. The prediction model led to a 1.5-fold increase in precision and 2.8-fold decrease in false-discovery rate, when compared with traditional single-dose biochemical screening, which demonstrates its potential to drastically expedite the kinome-specific drug discovery process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.