Abstract

PurposeThe purpose of this study was to investigate the impact of activating melanopsin-expressing intrinsically photosensitive retinal ganglion cells (ipRGCs) on dark-adapted (scotopic) electroretinograms (ERG).MethodsWe used mice (Opn4Cre/+) expressing cre recombinase in melanopsin-expressing cells for a targeted gene delivery of a chemogenetic Gq-coupled receptor, hM3Dq, to ipRGCs. Intraperitoneal injection of clozapine N-oxide (CNO) at 5 mg/kg was used for acute activation of hM3Dq and thus excitation of ipRGCs in darkness. Dark-adapted flash ERGs were recorded across a 9-fold range of irradiances from hM3Dq Opn4Cre/+ and control Opn4Cre/+ mice before and after intraperitoneal injection of CNO. A- and b-wave amplitudes and implicit times and oscillatory potentials (OPs) were analyzed. Paired-flash stimuli were used to isolate cone-driven responses.ResultsClozapine N-oxide application suppressed a- and b-wave amplitudes of the dark-adapted ERG across the flash intensity range in hM3Dq Opn4Cre/+ mice compared to control mice. Examination of the normalized irradiance-response functions revealed a shift in b-wave but not a-wave sensitivity. No changes in a- and b-wave implicit times were detected. Total OP amplitudes were also reduced in hM3Dq Opn4Cre/+ mice compared to controls following CNO administration. The paired-flash method revealed reduction in both the first (rods and cones) and second (cones only) flash response.ConclusionsAcute and selective activation of ipRGCs modulates the amplitude of both a- and b-waves of the scotopic ERG, indicating that the influence of this ganglion cell class on the retinal physiology extends to the photoreceptors as well as their downstream pathways.

Highlights

  • Correspondence: Nina Milosavljevic; Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester M13 9PT, UK; nina.milosavljevic@ manchester.ac.uk

  • Total oscillatory potentials (OPs) amplitudes were reduced in hM3Dq Opn4Cre/þ mice compared to controls following clozapine N-oxide (CNO) administration

  • Acute and selective activation of intrinsically photosensitive retinal ganglion cells (ipRGCs) modulates the amplitude of both a- and b-waves of the scotopic ERG, indicating that the influence of this ganglion cell class on the retinal physiology extends to the photoreceptors as well as their downstream pathways

Read more

Summary

Objectives

The purpose of this study was to investigate the impact of activating melanopsinexpressing intrinsically photosensitive retinal ganglion cells on dark-adapted electroretinograms (ERG). We aimed to drive targeted expression of excitatory hM3Dq in ipRGCs and modulate their activity in vivo

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call