Abstract

Halogenated biaryls are vital structural skeletons in bioactive products. In this study, an effective chemoenzymatic halogenation by vanadium-dependent chloroperoxidase from Camponotus inaequalis (CiVCPO) enabled the transformation of freely rotating biaryl bonds to sterically hindered axis. The yields were up to 84 % for the tribrominated biaryl products and up to 65 % when isolated. Furthermore, a one-pot, two-step chemoenzymatic strategy by incorporating transition metal catalyzed Suzuki coupling and the chemoenzymatic halogenation in aqueous phase were described. This strategy demonstrates a simplified one-pot reaction sequence with organometallic and biocatalytic procedures under economical and environmentally beneficial conditions that may inspire further research on synthesis of sterically hindered biaryls.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.