Abstract

Glycosphingolipids (GSLs) play essential roles in many important biological processes, making them attractive synthetic targets. In this paper, a viable chemoenzymatic method is described for the synthesis of globo-series GSLs, namely, Gb4, Gb5, SSEA-4, and Globo H. The strategy uses a chemically synthesized lactoside acceptor equipped with a partial ceramide structure that is uniquely extended by glycosyltransferases in a highly efficient one-pot multiple enzyme (OPME) procedure. A direct and quantitative conversion of Gb4 sphingosine to Globo H sphingosine is achieved by performing two-sequential OPME glycosylations. A reduction and N-acylation protocol allows facile incorporation of various fatty acids into the lipid portions of the GSLs. The chemically well-defined lipid-modified Globo H-GSLs displayed some differences in their immunosuppressive activities, which may benefit the structural modifications of Globo H ceramides in finding new types of immunosuppressive agents. The strategy outlined in this work should be applicable to the rapid access to other complex GSLs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call