Abstract

AbstractIn this article, a review of the chemoenzymatic synthesis of functional amylosic materials by means of a-glucan phosphorylase-catalyzed enzymatic polymerization is presented. The first topic of this review deals with the synthesis of amylose-grafted heteropolysaccharides composed of abundant polysaccharide main chains, such as chitin/chitosan, cellulose, alginate, xanthan gum, and carboxymethyl cellulose. The synthesis was achieved by combining the a-glucan phosphorylase-catalyzed enzymatic polymerization forming amylose with the appropriate chemical reaction (chemoenzymatic method). The second topic is the construction of amylosic supramolecular materials such as hydrogels and films by means of the vine-twining polymerization approach, which is a method for the formation of amylose-polymer inclusion complexes in the a-glucan phosphorylase-catalyzed polymerization field. In these studies, the designed graft copolymeric guest compounds were first synthesized. Then, the a-glucan phosphorylase-catalyzed enzymatic polymerization was carried out in the presence of the graft copolymers to produce the amylosic supramolecular materials through the formation of inclusion complexes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.