Abstract
AbstractThe importance of multivalency for N‐glycan‐protein interactions has primarily been studied by attachment of minimal epitopes to artificial multivalent scaffold and not in the context of multi‐antennary glycans. N‐glycans can be modified by bisecting GlcNAc, core xylosides and fucosides, and extended N‐acetyl lactosamine moieties. The impact of such modifications on glycan recognition are also not well understood. We describe here a chemoenzymatic methodology that can provide N‐glycans expressed by the parasitic worm S. mansoni having unique epitopes at each antenna and containing core xyloside. NMR, computational and electron microscopy were employed to investigate recognition of the glycans by the human lectin DC‐SIGN. It revealed that core xyloside does not influence terminal epitope recognition. The multi‐antennary glycans bound with higher affinity to DC‐SIGN compared to mono‐valent counterparts, which was attributed to proximity‐induced effective concentration. The multi‐antennary glycans cross‐linked DC‐SIGN into a dense network, which likely is relevant for antigen uptake and intracellular routing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.