Abstract

Sialic acids are common terminal carbohydrates on cell surface. Together with internal carbohydrate structures, they play important roles in many physiological and pathological processes. In order to obtain α2-3-sialylated oligosaccharides, a highly efficient one-pot three-enzyme synthetic approach was applied. The P. multocida α2-3-sialyltransferase (PmST1) involved in the synthesis was a multifunctional enzyme with extremely flexible donor and acceptor substrate specificities. Sialyltransferase acceptors, including type 1 structure (Galβ1-3GlcNAcβProN(3)), type 2 structures (Galβ1-4GlcNAcβProN(3) and 6-sulfo-Galβ1-4GlcNAcβProN(3)), type 4 structure (Galβ1-3GalNAcβProN(3)), type 3 or core 1 structure (Galβ1-3GalNAcαProN(3)) and human milk oligosaccharide or lipooligosaccharide lacto-N-tetraose (LNT) (Galβ1-3GlcNAcβ1-3Galβ1-4GlcβProN(3)), were chemically synthesized. They were then used in one-pot three-enzyme reactions with sialic acid precursor ManNAc or ManNGc, to synthesize a library of natural occurring α2-3-linked sialosides with different internal sugar units. The sialylated oligosaccharides obtained are valuable probes for their biological studies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call