Abstract

Plastic upcycling through catalytic transformations is an attractive concept to valorize waste, but the clean and energy-efficient production of high-value products from plastics remains challenging. Here, we introduce chemoenzymatic photoreforming as a process coupling enzymatic pretreatment and solar-driven reforming of polyester plastics under mild temperatures and pH to produce clean H2 and value-added chemicals. Chemoenzymatic photoreforming demonstrates versatility in upcycling polyester films and nanoplastics to produce H2 at high yields reaching ∼103-104 μmol gsub-1 and activities at >500 μmol gcat-1 h-1. Enzyme-treated plastics were also used as electron donors for photocatalytic CO2-to-syngas conversion with a phosphonated cobalt bis(terpyridine) catalyst immobilized on TiO2 nanoparticles (TiO2|CotpyP). Finally, techno-economic analyses reveal that the chemoenzymatic photoreforming approach has the potential to drastically reduce H2 production costs to levels comparable to market prices of H2 produced from fossil fuels while maintaining low CO2-equivalent emissions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.