Abstract

In the past decade, numerous chemical technologies have been developed to allow the site-specific post-translational modification of proteins. Traditionally covalent chemical protein modification has been accomplished by the attachment of synthetic groups to nucleophilic amino acids on protein surfaces. These chemistries, however, are rarely sufficiently selective to distinguish one residue within a literal sea of chemical functionality. One solution to this problem is to introduce a unique chemical handle into the target protein that is orthogonal to the remainder of the proteome. In practice, this handle can be a novel peptide sequence, which forms a 'tag' that is selectively and irreversibly modified by enzymes. Furthermore, if the enzymes can tolerate substrate analogs, it becomes possible to engineer chemically modified proteins in a site-specific fashion. This review details the significant progress in creating techniques for the chemoenzymatic generation of protein-small molecule constructs and provides examples of novel applications of these methodologies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.