Abstract

Dissolved organic matter (DOM) plays a key role in many biogeochemical processes, but the drivers controlling the diversity of chemical composition and properties of DOM molecules (chemodiversity) in soils are poorly understood. It has also been debated whether environmental conditions or intrinsic molecular properties control the accumulation and persistence of DOM due to the complexity of both molecular composition of DOM and interactions between DOM and surrounding environments. In this study, soil DOM samples were extracted from 33 soils collected from different regions of China, and we investigated the effects of climate and soil properties on the chemodiversity of DOM across different regions of China, employing a combination of Fourier transform ion cyclotron resonance mass spectrometry, optical spectroscopy, and statistical analyses. Our results indicated that, despite the heterogeneity of soil samples and complex influencing factors, aridity and clay can account for the majority of the variations of DOM chemical composition. The finding implied that DOM chemodiversity is an ecosystem property closely related to the environment, and can be used in developing large-scale soil biogeochemistry models for predicting C cycling in soils.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call