Abstract

Biobased furfurylamine (FAM) is a versatile platform molecule for producing additives, pharmaceuticals, and pesticides. Recombinant E. coli HNND-AlaDH was created by co-expressing L-alanine dehydrogenase (AlaDH) and mutated Aspergillus terreus ω-transaminase (HNND), aiming to convert furfural (FUR) into FAM using inexpensive L-alanine and isopropylamine as mixed amine donors. In ChCl:FA:OA (10 wt%), pineapple peel, bagasse, barley shell, peanut shell, and corn stalk could be efficiently transformed into FUR under 170 °C for 10 min. Pineapple peel produced a high titer of FUR (183.3 mM). Additionally, the viscosity, surface tension and polarity of ChCl:FA:OA were explored. The biomass-derived FUR was fully transformed to FAM by HNND-AlaDH with amine donor (1:1:1 of L-Ala/isopropylamine/FUR mol/mol/mol) within 300 min. Accordingly, the FAM productivity was 0.58 g/(g xylan in pineapple peel). This chemobiocatalytic strategy established through the combination of chemocatalysis and biocatalysis could be applied to convert renewable biomass into valuable organic amines.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call