Abstract

Solid electrolytes encompass various types of nanodefects, including grain boundaries and nanovoids at the Li-metal/solid electrolyte interface, where lithium dendrite penetration has been extensively observed. Despite the importance of ion transport near grain boundaries with different anisotropy and the combinatorial effects with interfacial nanovoids, a comprehensive understanding of these phenomena has remains elusive. Here, we develop a chemo-electro-mechanical phase-field model to elucidate how Li penetrates Li7La3Zr2O12 in the co-presence of grain boundaries and interfacial nanovoids. The investigation unveils a grain-boundary-anisotropy-dependent behavior for Li-ion transport correlated with the presence of interfacial nanovoids. Notably, the Σ1 grain boundary exhibits faster Li dendrite growth, particularly in the co-presence of interfacial nanovoids. The model quantitatively reveals whether interfacial electronic properties dominate Li dendrite morphology and penetration, providing a strategy for designing stable Li/solid electrolyte interfaces. These findings help prioritize approaches for optimally tailoring nanodefects and exploiting synergetic effects at the interface to prevent dendrite formation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.