Abstract

The discovery of simple and efficient catalyst systems for the selective oxofunctionalization of hydrocarbons is a challenging task of modern chemistry. The biomimetic approach, which aims at mimicking the reactivity of natural enzymes in catalyzed transformation with synthetic low-molecular weight compounds, has been widely applied to the search for new transition metal based catalyst systems in the last two decades. In effect, numerous iron and manganese complexes modeling the catalytic performance of non-heme metal-containing monooxygenases have been reported and intensively investigated. In this contribution, non-heme iron- and manganese catalyzed selective oxidations of alkanes, as well as chemo- and stereoselective epoxidations and cis-dihydroxylations of alkenes, using H2O2 as the oxygen source, are reviewed, with major focus on the their synthetic potential. Recent experimental investigations of the nature of catalytically active species and mechanisms of their action are summarized.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.