Abstract

AbstractWe report high‐performance I+/H2O2 catalysis for the oxidative or decarboxylative oxidative α‐azidation of carbonyl compounds by using sodium azide under biphasic neutral phase‐transfer conditions. To induce higher reactivity especially for the α‐azidation of 1,3‐dicarbonyl compounds, we designed a structurally compact isoindoline‐derived quaternary ammonium iodide catalyst bearing electron‐withdrawing groups. The nonproductive decomposition pathways of I+/H2O2 catalysis could be suppressed by the use of a catalytic amount of a radical‐trapping agent. This oxidative coupling tolerates a variety of functional groups and could be readily applied to the late‐stage α‐azidation of structurally diverse complex molecules. Moreover, we achieved the enantioselective α‐azidation of 1,3‐dicarbonyl compounds as the first successful example of enantioselective intermolecular oxidative coupling with a chiral hypoiodite catalyst.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call