Abstract
Building on recent developments in photoredox chemistry, a team led by Aiwen Lei of Wuhan University has found a new solution to one of chemistry’s long-standing synthetic challenges: the catalytic anti-Markovnikov hydration of olefins (ACS Catal. 2017, DOI: 10.1021/acscatal.6b03388). Direct addition of water to olefins to make alcohols is a well-developed industrial chemical reaction. For most olefins, this hydration process involves using an acid catalyst, such as sulfuric or phosphoric acid, and follows Markovnikov’s rule, in which the hydroxyl group bonds to the double-bond carbon that has the greater number of carbon–carbon bonds. For terminal olefins, the process produces secondary alcohols. The anti-Markovnikov hydration of olefins, in which the selectivity is reversed and the hydroxyl group bonds to the carbon on the other end of the double bond, converts terminal olefins to primary alcohols. But catalytic anti-Markovnikov olefin hydration is not straightforward; it requires indirect hydroboration...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.