Abstract

The most comprehensive data set on uranium, thorium, and radium isotopes in the Ganga-Brahmaputra, one of the major river systems of the world, is reported here. The dissolved 238U concentration in these river waters ranges between 0.44 and 8.32 μ/1, and it exhibits a positive correlation with major cations (Na + K + Mg + Ca). The 238U ∑Cations ratio in waters is very similar to that measured in the suspended sediments, indicating congruent weathering of uranium and major cations. The regional variations observed in the [ 234U 238U ] activity ratio are consistent with the lithology of the drainage basins. The lowland tributaries (Chambal, Betwa, Ken, and Son), draining through the igneous and metamorphic rocks of the Deccan Traps and the Vindhyan-Bundelkhand Plateau, have [ 234U 238U ] ratio in the range 1.16 to 1.84. This range is significantly higher than the near equilibrium ratio (~1.05) observed in the highland rivers which drain through sedimentary terrains. The dissolved 226Ra concentration ranges between 0.03 and 0.22 dpm/1. The striking feature of the radium isotopes data is the distinct difference in the 228Ra and 226Ra abundances between the highland and lowland rivers. The lowland waters are enriched in 228Ra while the highland waters contain more 226Ra. This difference mainly results from the differences in their weathering regimes. The discharge-weighted mean concentration of dissolved 238U in the Ganga (at Patna) and in the Brahmaputra (at Goalpara) are 1.81 and 0.63 μ/1, respectively. The Ganga-Brahmaputra river system constitutes the major source of dissolved uranium to the Bay of Bengal. These rivers transport annually about 1000 tons of uranium to their estuaries, about 10% of the estimated global supply of dissolved uranium to the oceans via rivers. The transport of uranium by these rivers far exceeds that of the Amazon, although their water discharge is only about 20% of that of the Amazon. The high intensity of weathering of uranium in the Ganga-Brahmapura River system can also be deduced from the [ 232Th 238U ] and [ 230Th 238U ] activity ratios measured in the suspended sediments. 230Th is enriched by about 19% in the suspended sediments relative to its parent 238U. The flux of excess 230Th supplied to the Bay of Bengal via these river sediments is 980 × 10 12 dpm/a, about six times more than its in situ production from seawater in the entire Bay of Bengal.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call