Abstract

Absolute rate constants and Arrhenius parameters for hydrogen abstractions (from carbon) by the t-butoxyl radical ((t) BuO.) are reported for several hydrocarbons and tertiary amines in solution. Combined with data already in the literature, an analysis of all the available data reveals that most hydrogen abstractions (from carbon) by (t) BuO. are entropy controlled (i.e., TdeltaS > deltaH, in solution at room temperature). For substrates with C-H bond dissociation energies (BDEs) > 92 kcal/mol, the activation energy for hydrogen abstraction decreases with decreasing BDE in accord with the Evans-Polanyi equation, with alpha approximately 0.3. For substrates with C-H BDEs in the range from 79 to 92 kcal/mol, the activation energy does not vary significantly with C-H BDE. The implications of these results in the context of the use of (t) BuO. as a chemical model for reactive oxygen-centered radicals is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call