Abstract

The anionic phosphide-bridged complexes (H-DBU)[M(2)Cp(2)(μ-PHR*)(CO)(4)] (M = Mo, W; R* = 2,4,6-C(6)H(2)(t)Bu(3); Cp = η(5)-C(5)H(5), DBU = 1,8-diazabicyclo [5.4.0] undec-7-ene) react with molecular oxygen to give the corresponding oxophosphinidene complexes (H-DBU)[MCp{P(O)R*}(CO)(2)] as major products (Mo-P = 2.239(1) Å for the Mo complex). The latter anionic complexes are protonated by HBF(4)·OEt(2) to give the hydroxyphosphide derivatives [MCp{P(OH)R*}(CO)(2)]. In the presence of excess acid, the molybdenum complex yields the fluorophosphide complex [MoCp(PFR*)(CO)(2)] (Mo-P = 2.204(1) Å), while the tungsten compound reacts with excess HCl to give an unstable chlorophosphine complex [WCpCl(PHClR*)(CO)(2)] which is rapidly hydrolyzed to give [WCpCl{PH(OH)R*}(CO)(2)], having a complexed arylphosphinous acid (Mo-P = 2.460(2) Å). The molybdenum anion reacts with strong C-based electrophiles such as [Me(3)O]BF(4), Et(2)SO(4), C(2)H(3)C(O)Cl, and PhC(O)Cl to give the corresponding alkoxyphosphide derivatives [MoCp{P(OR)R*}(CO)(2)] (R = Me, Et, COC(2)H(3), COPh; Mo-P = 2.197(2) Å for the benzoyl compound), as a result of the attack of the electrophile at the O atom of the oxophosphinidene ligand. In contrast, the reactions with milder alkylating reagents such as the alkyl halides MeI, EtI, C(3)H(5)Br, and C(3)H(3)Br give selectively the corresponding κ(2)-phosphinite complexes [MoCp{κ(2)-OP(R)R*}(CO)(2)] [R = Me, Et, C(3)H(5), C(3)H(3); Mo-P = 2.3733(5) Å for the allyl compound] as a result of the attack of the electrophile at the P atom of the oxophosphinidene ligand. According to density functional theory (DFT) calculations, the oxygen atom of the phosphinidene ligand bears the highest negative charge in the molybdenum anion, while the highest occupied molecular orbital (HOMO) of this complex has substantial Mo-P π bonding character. Thus, it is concluded that the phosphinite complexes are formed under conditions of orbital control, while charge-controlled reactions tend to give alkoxyphosphide derivatives.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.