Abstract

The styrene-water binary clusters SW(n), with n = 1-5 have been studied by the (one-color) resonant two-photon ionization technique using the resonance of styrene. The structures and energetics of the neutral clusters are investigated using a search technique that employs Monte Carlo procedure. The strong tendency for water molecules to form cyclic hydrogen-bonded structures is clearly observed in the SW(n) structures starting from n =3. The results indicate that the spectral shifts correlate with the interaction energies between styrene and the water subcluster (W(n)) within the SW(n) clusters. Evidence is presented that points to (1) the formation of a covalent bonded styrene radical cation dimer following the 193 nm MPI of styrene neutral clusters, (2) proton transfer from the styrene dimer cation to the water or methanol subcluster, resulting in the formation of protonated water or methanol clusters and a styrene dimer radical, and (3) extensive solvation of the styrene dimer radical within the protonated solvent molecules. The proton-transfer reactions may explain the strong inhibition effects exerted by small concentrations of water or methanol on the cationic polymerization of styrene. These results provide a molecular level view of the inhibition mechanism exerted by protic solvents on the cationic polymerization of styrene.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.