Abstract

The chemistry of sea-salt particles was investigated in summer Antarctica at a site about 150 km from the open ocean. Aerosol samples were collected using a low-pressure impactor which divides particles into 12 size fractions over the aerodynamic particle diameter range 0.045–15 μm. Measured sea-salt particle concentrations were clearly lower than concentrations typically observed at coastal Antarctica. The mass size distribution of sea salt was tri-modal with a submicron mode centering at 0.5–1 μm and two supermicron modes centering slightly below 2 μm and somewhere between 2 and 10 μm, respectively. On average more than 70% of sea salt was found in the supermicron size range, the lower supermicron mode being usually the dominant. Sea-salt particles displayed a large chloride loss with respect to the bulk sea water. The average loss percentage was more than 90% for submicron particles and decreased to about 50% for particles larger than 3 μm in diameter. The primary ions causing the chloride loss were sulfate, nitrate, and methanesulfonate (MSA). The aerosol MSA to non-sea-salt sulfate weight ratio seemed to have been increased by the presence of sea-salt particles. Particulate nitrate was associated strongly with sea salt, the most likely formation pathway being the interaction of nitric acid or some other gaseous nitrogen compounds with these particles in the Antarctic atmosphere.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.