Abstract

Although ketene has been proposed to be an active intermediate in a number of reactions including OXZEO (metal oxide-zeolite)-catalyzed syngas conversion, dimethyl ether carbonylation, methanol to hydrocarbons, and CO2 hydrogenation, its chemistry and reaction pathway over zeolites are not well understood. Herein, we study the pathway of ketene transformation to gasoline range hydrocarbons over the molecular sieve H-SAPO-11 by kinetic analysis, in situ infrared spectroscopy, and solid-state nuclear magnetic resonance spectroscopy. It is demonstrated that butene is the reaction intermediate on the paths toward gasoline products. Ketene transforms to butene on the acid sites via either acetyl species following an acetic acid ketonization pathway or acetoacetyl species with keto-enol tautomerism following an acetoacetic acid decarboxylation pathway when in the presence of water. This study reveals experimentally for the first time insights into ketene chemistry in zeolite catalysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.