Abstract

In June 1999, an intense swarm of earthquakes occurred on the Endeavour segment of the Juan de Fuca Ridge influencing hydrothermal activity in and around the Main Endeavour Field (MEF). Here we report the dissolved concentrations of 31 species from five high‐temperature vents sampled 3 months after the seismic event. The spatial variability of vent fluid chemistry is extreme. Vapor‐dominated vent fluids at Cantilever and Sully sites have high measured temperatures (375°–379°C), high dissolved gas and boron concentrations, but low SiO2. Modeling results indicate that these fluids can be accounted for by supercritical phase separation and brine condensation. Other vent fluids have moderate temperatures (340°–366°C) and chloride concentrations (208–426 mmol/kg), and may result from mixing of supercritical, vapor‐rich fluids with evolved seawater. Phase equilibria calculations indicate that in addition to chloride, redox, temperature, and especially pressure play key roles in accounting for compositional variability of vent fluids at MEF. In comparison with earlier (1988) data, the 1999 data set reveals significantly lower chloride concentrations and higher boron, whereas alkali and alkaline earth cations are lower by 10–20% in keeping with chloride decrease. That dissolved chloride, boron, and other elements returned to preevent levels when again sampled in 2000 provide additional data documenting the inherently dynamic nature of hydrothermal systems at mid‐ocean ridges.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.