Abstract

AbstractThe mosquito Aedes aegypti L. (Diptera: Culicidae) is a vector of arboviral diseases such as dengue fever. Currently, the main approach to mosquito control is the application of synthetic insecticides, which can lead to negative environmental impacts and insecticide resistance in mosquito populations. As such, there has been increased interest in developing alternative methods for control of vector populations such as utilizing plant compounds that act as larvicides. The aim of this work is to evaluate the effectiveness of Eucalyptus sp. (Myrtaceae) essential oils for control of Ae. aegypti larvae. The essential oils of seven Eucalyptus species and hybrids were extracted by hydrodistillation and analyzed by gas chromatography coupled to mass spectrometry. The essential oils were further diluted in water with acetone (0.40%) at the following concentrations: 100, 50, 25, and 10 μg ml−1. Mortality trials were conducted in plastic containers with a solution of ultrapure water and 200 μl of diluted oil for a total volume of 50 ml per treatment. The experiments for each Eucalyptus species/hybrid and concentration were performed in triplicate, using a control containing only water and acetone. Twenty larvae were added to each container and mortality was recorded at 1, 2, 4, and 24 h. The Eucalyptus essential oils showed larvicidal activity in most of the evaluated concentrations, mainly at 50 and 100 μg ml−1. Eucalyptus benthamii Maiden & Cambage and the hybrid Urograndis displayed the highest larvicidal potential (100% at 24 h) in the 100 μg ml−1 treatment. Larval mortality of Ae. aegypti showed a positive correlation with the compounds γ‐, o‐cymol, o‐cymene, terpineol, 3‐dodecylfuran‐2,5‐dione, α‐pinene, globulol, and ledol. The most abundant compounds identified in the essential oils were 1,8‐cineole and α‐pinene. These results highlight the potential of using Eucalyptus essential oils for the isolation of natural larvicidal products.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.