Abstract

PbTiO3-based ferroelectrics have impressive electroactive properties, originating from the Pb2+ 6s2 electron lone-pair, which cause large elastic distortion and electric polarization due to cooperative pseudo Jahn-Teller effect. Recently, tin-based perovskite oxide (SnTiO3) containing Sn2+ and a chemistry similar to that of the 6s2 lone-pair has been identified as a thermally stable, environmentally friendly substitute for PbTiO3-based ferroelectrics. However experimental attempts to stabilize Sn2+ on the A-site of perovskite ATiO3 have so far failed. In this work, we report on the growth of atomically smooth, epitaxial, and coherent Sn-alloyed SrTiO3 films on SrTiO3 (001) substrates using a hybrid molecular beam epitaxy approach. With increasing Sn concentration, the out-of-plane lattice parameter first increases in accordance with the Vegard’s law and then decreases for Sn(Sr+Ti+Sn) at. % ratio > 0.1 due to the incorporation of Sn2+ at the A-site. Using a combination of high-resolution X-ray photoelectron spectroscopy and density functional calculations, we show that while majority of Sn is on the B-site, there is a quantitatively unknown fraction of Sn being consistent with the A-site occupancy making SrTiO3 polar. A relaxor-like ferroelectric local distortion with monoclinic symmetry, induced by A-site Sn2+, was observed in Sn-doped SrTiO3 with Sn(Sr+Ti+Sn) at. % ratio = 0.1 using optical second harmonic generation measurements. The role of growth kinetics on the stability of Sn2+ in SrTiO3 is discussed.

Highlights

  • PbTiO3-based ferroelectrics have impressive electroactive properties, originating from the Pb2+ 6s2 electron lone-pair, which cause large elastic distortion and electric polarization due to cooperative pseudo Jahn-Teller effect

  • We report on the growth of atomically smooth, epitaxial, and coherent Sn-alloyed SrTiO3 films on SrTiO3 (001) substrates using a hybrid molecular beam epitaxy approach

  • Sn in II-IV perovskite A2+B4+O3 structure can occupy both A- and B-sites, which results in a number of significant synthesis challenges along the route to novel Sn-based perovskite compounds that have recently generated a lot of interest in the functional materials community

Read more

Summary

Introduction

PbTiO3-based ferroelectrics have impressive electroactive properties, originating from the Pb2+ 6s2 electron lone-pair, which cause large elastic distortion and electric polarization due to cooperative pseudo Jahn-Teller effect. Experimental efforts dedicated to the bulk synthesis of Sn-alloyed SrTiO3 have established that incorporation of Sn4+ at the Ti-sites can readily be achieved using extreme oxidation conditions, while stabilization of Sn2+ at the Sr-sites remains highly challenging.[15,17,18,19] On the other hand, thin-film synthesis approaches offer additional degrees of freedom to tailor the solubility of Sn with epitaxial strain, as well as control over its growth kinetics.

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call