Abstract

For several decades, hit identification for drug discovery has been facilitated by developments in both fragment-based and high-throughput screening technologies. However, a major bottleneck in drug discovery projects continues to be the optimization of primary hits from screening campaigns in order to derive lead compounds. Computational chemistry or molecular modeling can play an important role during this hit-to-lead (H2L) stage by both suggesting putative optimizations and decreasing the number of compounds to be experimentally synthesized and evaluated. However, it is also crucial to consider the feasibility of organically synthesizing these virtually designed compounds. Furthermore, the generated molecules should have reasonable physicochemical properties and be medicinally relevant. This review focuses on chemistry-driven and structure-based computational methods that can be used to tackle the difficult problem of H2L optimization, with emphasis being placed on the strategy developed in our laboratory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.