Abstract

Solution chemistry was measured in two major inlets, lake water column, lake outlet, and soils of the South Lake watershed in the Adirondack Mountains, New York. The east inlet had greater concentrations of H+, sulfate-S, and Al and smaller concentrations of base cations and silica than the west inlet (70, 116, 25, 90, 64 and 4, 99, 8, 228, 148 μeq L−1 of H+ and sulfate-S, μmol L−1 Al, μeq L−1 total base cations and μmol L−1 silica in east and west inlets, respectively). Concentrations of base cations in C horizon soil solutions (157 μeq L−1 total base cations) were smaller and greater than west and east inlets, respectively. This suggests that water flowing into the west inlet contacted deeper mineral layers, whereas water reaching the east inlet did not. Lake and lake outlet concentrations were also intermediate between the two inlets, and the lake was acidic (pH 4.9 to 5.1) with relatively high total monomeric Al concentrations (8 to 9 μmol Al L−1). The east inlet also had greater DOC concentrations than the west (0.38 and 0.24 μmol C L−1, respectively), again indicating that soil solutions entering the east inlet passed through the forest floor but had more limited contact with deeper mineral layers in comparison with the west inlet. Differences between the streams are hypothesized to be related to contact of percolating solutions with mineral soil horizons and underlying glacial till, which provides neutralization of acidic solutions and releases base cations. This work indicates that processes controlling surface water acidification can be spatially quite variable over a small watershed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.