Abstract
AbstractSulfide‐based superionic conductors with high ionic conductivity have been explored as candidates for solid‐state Li batteries. However, moisture hypersensitivity has made their manufacture complicated and costly and also impeded applications in batteries. Now, a sulfide‐based superionic conductor Li4Cu8Ge3S12 with superior stability was developed based on the hard/soft acid–base theory. The compound is stable in both moist air and aqueous LiOH aqueous solution. The electrochemical stability window was up to 1.5 V. An ionic conductivity of 0.9×10−4 S cm with low activation energy of 0.33 eV was achieved without any optimization. The material features a rigid Cu‐Ge‐S open framework that increases its stability. Meanwhile, the weak bonding between Li+ and the framework promotes ionic conductivity. This work provides a structural configuration in which weak Li bonding in the rigid framework promotes an environment for highly conductive and stable solid‐state electrolytes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.