Abstract

For more than three decades the scanning tunnelling microscope (STM) has proven to be an indispensable tool to image molecules adsorbed at a surface at the highest detail possible. In addition to simply imaging molecules, STM can also be applied to monitor dynamic surface phenomena, including chemical reactions. By studying reactions at a surface at the single molecule level, unique information about reaction mechanisms can be obtained which remains hidden when conventional ensemble techniques are used. Many STM studies of chemical reactions have been performed in extreme environments like ultrahigh vacuum or high pressure chambers, but these are far removed from conditions in which most chemical and biological processes take place, i.e., in a liquid at ambient atmospheres. This feature paper highlights the developments in the relatively unexplored research area of investigating chemical reactions with an STM at a liquid/solid interface under ambient conditions. Covalent couplings between molecules, light-induced isomerisations, reactions under electrochemical control, and complex multistep processes and catalysis are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.