Abstract

Dimensionality plays a critical role in determining the properties of materials due to, for example, the different ways that electrons interact in three-dimensional, twodimensional (2D), and one-dimensional (1D) structures.1-5 The study of dimensionality has a long history in chemistry and physics, although this has been primarily with the prefix “quasi” added to the description of materials; that is, quasi-1D solids, including square-planar platinum chain and metal trichalcogenide compounds,2,6 and quasi2D layered solids, such as metal dichalcogenides and copper oxide superconductors.3-5,7,8 The anisotropy inherent in quasi-1D and -2D systems is central to the unique properties and phases that these materials exhibit, although the small but finite interactions between 1D chains or 2D layers in bulk materials have made it difficult to address the interesting properties expected for the pure low-dimensional systems. Are pure low-dimensional systems interesting and worth pursuing? We believe that the answer to this question is an unqualified yes from the standpoints of both fundamental science and technology. One needs to look no further than past studies of the 2D electron gas in semiconductor heterostructures, which have produced remarkably rich and often unexpected results,9,10 and electron tunneling through 0D quantum dots, which have led to the concepts of the artificial atom and the creation of single electron transistors.11-15 In these cases, lowdimensional systems were realized by creating discrete 2D and 0D nanostructures. 1D nanostructures, such as nanowires and nanotubes, are expected to be at least as interesting and important as 2D and 0D systems.16,17 1D systems are the smallest dimension structures that can be used for efficient transport of electrons and optical excitations, and are thus expected to be critical to the function and integration of nanoscale devices. However, little is known about the nature of, for example, localization that could preclude transport through 1D systems. In addition, 1D systems should exhibit density of states singularities, can have energetically discrete molecularlike states extending over large linear distances, and may show more exotic phenomena, such as the spin-charge separation predicted for a Luttinger liquid.1,2 There are also many applications where 1D nanostructures could be exploited, including nanoelectronics, superstrong and tough composites, functional nanostructured materials, and novel probe microscopy tips.16-29 To address these fascinating fundamental scientific issues and potential applications requires answers to two questions at the heart of condensed matter chemistry and physics research: (1) How can atoms or other building blocks be rationally assembled into structures with nanometer-sized diameters but much longer lengths? (2) What are the intrinsic properties of these quantum wires and how do these properties depend, for example, on diameter and structure? Below we describe investigations from our laboratory directed toward these two general questions. The organization of this Account is as follows. In section II, we discuss the development of a general approach to the rational synthesis of crystalline nanowires of arbitrary composition. In section III, we outline key challenges to probing the intrinsic properties of 1D systems and illustrate solutions to these challenges with measurements of the atomic structure and electronic properties of carbon nanotubes. Last, we discuss future directions and challenges in section IV.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.