Abstract
Research and development of solid oxide fuel cells (SOFCs) and solid oxide electrolysis cells (SOECs) are currently of paramount importance in terms of realizing hydrogen energy and carbon emission reduction programs, which many countries have committed to. Although, there are many outstanding results in the fabrication and characterization of SOFCs and SOECs with promising oxygen-ionic and proton-conducting electrolytes, conventional zirconia electrolytes are still widely used not only in a lab-scale setup, but also in the form of enlarged cells and stacks, with the experimental operation of the latter during 10 000–100 000 h. To ensure good performance stability and microstructural integrity of such multilayered cells, a special attention should be paid to the chemical activity of functional materials toward their interaction with each other, especially in long-term focus. The literature analysis has shown that many undesirable processes occur in SOFCs and SOECs with the classical pairs of zirconia electrolytes and strontium-containing electrodes, including element segregation and interdiffusion, insulating phase formation, microscopic defect appearance, and delamination. Some of these processes can be efficiently eliminated by using so-called interlayers designed from doped ceria materials. Due to their numerous beneficial functions, such interlayers have several synonymous names: blocking, barrier, buffer, or protecting layers. Herein, we review the recent progress and achievements in the fundamental and applied researches dealing with the ceria interlayers and their impact on chemistry and electrochemistry of solid oxide cells based on classical zirconia electrolytes as well as promising oxygen-ionic and proton-conducting analogs. <br> The bibliography includes 405 references.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.